Uniform Asymptotics for Polynomials Orthogonal With Respect to a General Class of Discrete Weights and Universality Results for Associated Ensembles: Announcement of Results

نویسندگان

  • J. Baik
  • T. Kriecherbauer
  • K. T.-R. McLaughlin
  • P. D. Miller
چکیده

We compute the pointwise asymptotics of orthogonal polynomials with respect to a general class of pure point measures supported on finite sets as both the number of nodes of the measure and also the degree of the orthogonal polynomials become large. The class of orthogonal polynomials we consider includes as special cases the Krawtchouk and Hahn classical discrete orthogonal polynomials, but is far more general. In particular, we consider nodes that are not necessarily equally spaced. The asymptotic results are given with error bound for all points in the complex plane except for a finite union of discs of arbitrarily small but fixed radii. These exceptional discs are the neighborhoods of the so-called band edges of the associated equilibrium measure. As applications, we prove universality results for correlation functions of a general class of discrete orthogonal polynomial ensembles, and in particular we deduce asymptotic formulae with error bound for certain statistics relevant in the random tiling of a hexagon with rhombus-shaped tiles. The discrete orthogonal polynomials are characterized in terms of a a Riemann-Hilbert problem formulated for a meromorphic matrix with certain pole conditions. By extending the methods of [17, 22], we suggest a general and unifying approach to handle Riemann-Hilbert problems in the situation when poles of the unknown matrix are accumulating on some set in the asymptotic limit of interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Asymptotics for Polynomials Orthogonal With Respect to a General Class of Discrete Weights and Universality Results for Associated Ensembles

A general framework is developed for the asymptotic analysis of systems of polynomials orthogonal with respect to measures supported on finite sets of nodes. Starting from a purely discrete interpolation problem for rational matrices whose solution encodes the polynomials, we show how the poles can be removed in favor of discontinuities along certain contours, turning the problem into an equiva...

متن کامل

Universality in Random Matrix Theory for Orthogonal and Symplectic Ensembles

Abstract. We give a proof of universality in the bulk for orthogonal (β = 1) and symplectic (β = 4) ensembles of random matrices in the scaling limit for a class of weights w(x) = e (x) where V is a polynomial, V (x) = κ2mx+· · · , κ2m > 0. For such weights the associated equilibrium measure is supported on a single interval. The precise statement of our results is given in Theorem 1.1 below. F...

متن کامل

Universality at the Edge of the Spectrum for Unitary, Orthogonal and Symplectic Ensembles of Random Matrices

Abstract. We prove universality at the edge of the spectrum for unitary (β = 2), orthogonal (β = 1) and symplectic (β = 4) ensembles of random matrices in the scaling limit for a class of weights w(x) = e (x) where V is a polynomial, V (x) = κ2mx + · · · , κ2m > 0. The precise statement of our results is given in Theorem 1.1 and Corollaries 1.2, 1.3 below. For a proof of universality in the bul...

متن کامل

Strong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory

We consider polynomials orthogonal on [0,∞) with respect to Laguerre-type weights w(x) = xe, where α > −1 and where Q denotes a polynomial with positive leading coefficient. The main purpose of this paper is to determine Plancherel-Rotach type asymptotics in the entire complex plane for the orthonormal polynomials with respect to w, as well as asymptotics of the corresponding recurrence coeffic...

متن کامل

Uniform Asymptotics for Discrete Orthogonal Polynomials with Respect to Varying Exponential Weights on a Regular Infinite Lattice

Abstract. We consider the large-N asymptotics of a system of discrete orthogonal polynomials on an infinite regular lattice of mesh 1 N , with weight e , where V (x) is a real analytic function with sufficient growth at infinity. The proof is based on formulation of an interpolation problem for discrete orthogonal polynomials, which can be converted to a Riemann-Hilbert problem, and steepest de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003